Eukaryotic opportunists dominate the deep-subsurface biosphere in South Africa
نویسندگان
چکیده
Following the discovery of the first Eukarya in the deep subsurface, intense interest has developed to understand the diversity of eukaryotes living in these extreme environments. We identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in palaeometeoric fissure water up to 12,300 yr old in South African mines. Protozoa and Fungi have also been identified; however, they are present in low numbers. Characterization of the different species reveals that many are opportunistic organisms with an origin due to recharge from surface waters rather than soil leaching. This is the first known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen is the limiting factor for eukaryal population growth. The discovery of a group of Eukarya underground has important implications for the search for life on other planets in our solar system.
منابع مشابه
Ancient DNA complements microfossil record in deep-sea subsurface sediments.
Deep-sea subsurface sediments are the most important archives of marine biodiversity. Until now, these archives were studied mainly using the microfossil record, disregarding large amounts of DNA accumulated on the deep-sea floor. Accessing ancient DNA (aDNA) molecules preserved down-core would offer unique insights into the history of marine biodiversity, including both fossilized and non-foss...
متن کاملFungal and Prokaryotic Activities in the Marine Subsurface Biosphere at Peru Margin and Canterbury Basin Inferred from RNA-Based Analyses and Microscopy
The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been det...
متن کاملThe Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta
On Earth, the deep subsurface biosphere of both the oceanic and the continental crust is well known for surviving harsh conditions and environments characterized by high temperatures, high pressures, extreme pHs, and the absence of sunlight. The microorganisms of the terrestrial deep biosphere have an excellent capacity for adapting to changing geochemistry, as the alteration of the crust proce...
متن کاملEditorial: Geomicrobes: Life in Terrestrial Deep Subsurface
The deep terrestrial biosphere is an intriguing research field linking to astrobiology and evolution of life on early Earth (Grosch and Hazen, 2015). Living in the deep, dark, anoxic, oligotrophic, saline, highly pressurized and often hot subsurface requires some striking characteristics of the inhabitants (Kieft, 2016). We still know only little about the biochemical processes actually taking ...
متن کاملOceans of Discourses: Utilizing Q Methodology for Analyzing Perceptions on Marine Biodiversity Conservation in the Kogelberg Biosphere Reserve, South Africa
Citation: Hagan K and Williams S (2016) Oceans of Discourses: Utilizing Q Methodology for Analyzing Perceptions on Marine Biodiversity Conservation in the Kogelberg Biosphere Reserve, South Africa. Front. Mar. Sci. 3:188. doi: 10.3389/fmars.2016.00188 Oceans of Discourses: Utilizing Q Methodology for Analyzing Perceptions on Marine Biodiversity Conservation in the Kogelberg Biosphere Reserve, S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015